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Abstract—In the past years, various encrypted algorithms have
been proposed to fully or partially protect the multimedia content
in view of practical applications. In the context of digital TV
broadcasting, transparent encryption only protects partial con-
tent and fulfills both security and quality requirements. To date,
only a few reference-based works have been reported to evaluate
the quality of transparently encrypted images. However, these
works are incapable of reference-unavailable conditions. In this
paper, we conduct the first attempt that proposes a novel quality
evaluator in the absence of reference images. The key strategy
of proposed metric lies in extracting features by considering the
motivation of transparently encrypted images. Specifically, given
that encrypted images prevent the content to be easily recognized,
several features, including correlation coefficient, information
entropy and intensity statistic, are preliminarily extracted to
estimate visual recognizability. Meanwhile, considering that en-
crypted images avoid to be in extremely low-quality, we also
capture many features to measure the distortions on multiple
quality-sensitive image attributes, such as naturalness, structure,
and texture. Finally, the quality evaluator is built by bridging
all extracted features and corresponding quality scores via a
regression module. Experimental results demonstrate that the
proposed method is superior to the mainstream no-reference
quality evaluation methods designed for synthetically distorted
images and possesses a close approximation to state-of-the-art
reference-based methods designed for encrypted images.

Index Terms—Quality evaluation, visual security, encrypted
image, transparent encryption, no-reference.

I. INTRODUCTION

NOWADAYS, image data is under explosive growth, s-
torage, and propagation due to widely pervasive usage

of cameras, cloud storage devices and convenient availability
of network access [1], [2]. However, the copyright protection
becomes increasingly difficult due to the wanton propagation
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and even the illegal attacks in transmission network. Multime-
dia copyright crisis gradually emerges as a headache problem
that challenges the ethics, law, and technology.

In recent years, numerous security schemes have been
developed to protect the copyright for both individual privacy
and commercial confidentiality [1], [3]–[6]. Among those
schemes, encryption is a generally acknowledged approach.
Specifically, it protects image content by inserting ciphertext,
which can be unencrypted by an authorized user with plaintext.
For multimedia data, the encryption scheme is specifically de-
signed to meet the particular application environment [7], [8].
One well-known application is the digital TV broadcasting,
where transparent encryption are needful. In this application,
on the one hand, the encrypted images should avoid to be in
high-quality for ensuring the security to unauthorized viewers.
On the other hand, the encrypted images should also be in
relative high-quality to attract more unauthorized users to buy
the copyright [9]. It is apparent that the visual quality is the
key-defining property in the definition of security. Therefore,
evaluating the quality of transparently encrypted images is
meaningful to the encryption and broadcasting systems. In
general, image quality can be evaluated subjectively and
objectively. Subjective evaluation is the most reliable method
as it, to the greatest extent, reflects the intuitive subjective
feeling. However, it has intrinsical limitations, e.g., labor-
intensive, time-consuming, and expensive, thereby hindering
its widely practical applications. Hence, designing objective
solutions has attracted increasing attention from scholars to-
wards automatically evaluating visual quality of encrypted
multimedia [10]–[12].

In the literature, there have been several discussions on
visual quality evaluation [13]–[21]. Generally, existing metrics
can be mainly classified into two categories, i.e., reference-
based metrics and reference-free metrics (also denoted as no-
reference (NR), blind, or referenceless metric). To date, a great
variety of reference-based metrics have been reported to eval-
uate the synthetically distorted images with good performance
by computing the relationship between the reference image
and its distorted version [22]–[26]. However, as discussed
in Section III-B, the encrypted image possesses different
characteristics compared to the one generated by synthetical
distortions, such as contrast change, blockiness, noise, and
so on. Traditional metrics are unsuitable for evaluating the
quality of encrypted images. Therefore, it is highly desired to
design specific metrics for encrypted images. Until now, only a
few specific metrics have been reported by measuring quality-
sensitive image attributes, like structure, luminance, and edge.
Since the content of a low-quality encrypted image is usually
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hard to be recognized, these metrics believe that the visual
quality reflects visual security to some extent and name the
quality evaluation as security evaluation. For instance, Mao
and Wu [27] designed two quantitative visual security metrics,
namely ESS and LSS, based on edge similarity and luminance
similarity between the reference and encrypted images. In
[12], three metrics were proposed based on structure similarity,
image entropy, and spatial intensity correlation, respectively.
Likewise, Yao et al. [28] captured local pixel similarity cor-
relation between the corrupted image and its reference one to
quantify visual security. Jolfaei and Mirghadri [29] designed
three approaches according to the pixel value change, position
change, and value-position change. Tong et al. [11] proposed
a local feature based visual security (LFBVS) metric. To
be specific, both gradient similarity and luminance similarity
between the reference image and the processed one were
primarily extracted, followed by a error pooling procedure
to combine two similarities. In [10], Xiang et al. proposed
a novel visual security index by adaptively combining texture
and edge similarities. Specifically, the texture similarity was
estimated as the distance of features, extracted in gray level
co-occurrence matrix (GLCM), between the reference and
corrupted images, while the gradient similarity was estimated
by means of multi-threshold edge maps.

As can be seen, all these metrics mentioned above are
reference-based, which indicates that they merely suit for
reference available situations, yet are impossible for the broad-
er application range. In practice, we cannot always obtain
the reference information. One well-known example is the
application scenario of digital TV broadcasting. The broad-
caster usually provides a low-quality version of the broadcast
program to the users. If the quality of the program is too
low, it will not attract users, thereby losing its business value.
In general, monitoring the viewership traffic and perceptual
quality at the receiver can provide a timely reply about the
attractiveness to audiences, based on which the broadcaster
can dynamically change the quality level of the broadcast
program source to optimize the business value. Therefore, an
effective quality evaluator is needful to monitor the visual
quality of the program at the receiver. However, the reference
TV programme is not transmitted, and thus, existing reference-
based methods are incompetent to such a task. In this sense,
a NR metric is highly desired.

In this paper, we conduct the first attempt that proposes
a NR metric to evaluate visual quality of encrypted images.
Compared with existing metrics, the proposed metric pro-
vides several contributions: 1) This is a pioneering attempt
that evaluates visual quality of encrypted images without
access to reference images. Given that transparent encryption
considers both security protection and quality attractiveness,
the proposed metric is designed by extracting features from
measurements of visual recognizability and quality-related
image attributes. All extracted features are integrated via a
regression model to indicate the ultimate visual quality. 2)
To estimate visual recognizability, we propose a simple yet
effective way, i.e., extracting correlation coefficients, informa-
tion entropy, and intensity statistics. Inspired by traditional
quality evaluation metrics, some quality-related features are

captured by analyzing image naturalness, structure and texture
information. Specifically, in the absence of reference images,
structural information is captured by computing correlation
among multi-scale decomposed high order phase consistency
maps. This measurement is different from existing works. 3)
Experiments on the publicly available database demonstrate
that the proposed method possesses a close approximation
to state-of-the-art reference-based quality evaluation meth-
ods designed for encrypted images and obtains outstanding
performance compared to mainstream NR quality evaluation
methods designed for synthetically distorted images.

The rest of this article is organized as follows. Section
II presents the brief overview of the NR quality evaluation
metrics and provides the motivation of this article. In Section
III, we detail the proposed NR metric for encrypted images.
In Section IV, we conduct extensive experiments and insight-
ful analyses are provided based on the results. Finally, the
conclusion is drawn in Section V.

II. RELATED WORKS AND MOTIVATION

A. No-Reference Visual Quality Evaluation

At present, many NR visual quality evaluation metrics have
been reported, and they can be broadly divided into specific-
purpose and general-purpose metrics [30]–[35]. In case of
a known distortion, such as blockiness, blurriness/sharpness,
and contrast change, some specific-purpose quality evaluation
metrics are designed. For instance, Li et al. [36] proposed
a NR evaluation method for blocking artifacts via analysis
of Tchebichef moment. Considering the properties of human
visual system (HVS), Li et al. [20] also designed a novel
sharpness evaluation metric by learning multi-scale features
in spectral and spatial domains. Wang et al. [37] extracted
gradient statistical properties to indicate image blurriness, and
proposed a NR image blurriness evaluator by utilizing extreme
learning machine. In [38], a NR contrast evaluation method
was designed based on analysis of information. Fang et al.
[39] took moment and entropy features into account and built
a model based on natural scene statistics to estimate image
contrast.

Different from specific-purpose metrics, general-purpose
metrics aim to simultaneously quantify multiple synthetical
distortions by one quality evaluation metric. Until now, various
general-purpose NR metrics have been reported. According
to properties of natural images, representative works have
been proposed by analyzing natural scene statistics in spatial
and transformed domains [40], [41]. Besides, other categories
of features are also utilized. For example, Liu et al. [42]
captured local image entropy in both spectral and spatial
domains to estimate the perceptual quality. Li et al. [31]
extracted local binary pattern (LBP) and luminance histogram
to measure image distortions. Inspired by HVS characteristics,
Fang et al. [43] designed a NR metric for screen content by
extracting luminance-relevant and texture-relevant features. In
[44], Gu et al. utilized three groups of features inspired by
classical HVS and free-energy-based brain theory as well as
image naturalness. Then, the image distortion intensity was
estimated via a regression function. In addition, some metrics
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were also designed for multiply distorted images [34], [35],
[45]. For instance, Li et al. [45] took the gradient-weight
histogram of LBP map as the quality-sensitive feature and
built a prediction model (namely GWH-GLBP) for multiply-
distorted images via support vector regression (SVR). In [35],
a new model was proposed by extracting structural features
from the improved LBP descriptor, which was modified in
consideration of HVS characteristics. Likewise, inspired by
the HVS, Zhou et al. [34] extracted two groups of quality-
sensitive features to evaluate multiply-distorted images. More
specifically, the first group aimed to represent spatial contrast
by extracting structure-related features, and the second group
was used to reflect spatial resolution by extracting nonlocal
self-similarity statistics.

B. Motivation

In general, transparent encryption should meet both security
and quality requirements. Due to the specific requirements,
the encrypted images show different appearances compared
with the synthetically distorted images. Specifically, when an
image is encrypted at mild or moderate degree of strength, its
content can still be discernible with local or global structure
distortions. One example is shown in Fig. 1(b). It is clear
that, some local regions are corrupted slightly in comparison
with Fig. 1(a) regarding structure, texture, luminance, etc. The
whole image is clear and possesses similar appearance as
that processed by synthetical distortions, such as blockiness,
blurriness. In such a situation, the image is of relatively
high visual quality. Traditional evaluation metrics designed for
synthetically distorted images may be competent for evaluating
encrypted images to some extent. However, in the case of
high-strength encryption, the image content (especially the
main structure) suffers from dramatic changes and therefore
is hard to be intelligible, causing unpleasant visual experience
and almost losing its business value. In contrast, an image
is corrupted but still discernible even with severe synthetical
distortions. Fig. 1 presents an intuitive comparison between the
encrypted image and compressed image. Fig. 1(a) is the refer-
ence image, and Fig. 1(c) and Fig. 1(d) are its encrypted and
compressed versions, respectively. Clearly, the high-strength
encryption severely affects the content of the reference image,
and the encrypted image is hard to be recognized without hint.
By contrast, compression distorts local structural and textural
information with unnatural global perception. Despite this, it
does not affect the overall recognition of image content.

From the above analysis, it is clear that the encrypted image
presents different characteristics as the encrypted strength
changed. An effective quality evaluation method for encrypted
images should carefully consider these characteristics. On the
one hand, some measures are needful to estimate the visual
recognizability because the contents are hard to be recognized
in the extreme low-quality case. On the other hand, it requires
to draw lessons from traditional quality evaluation metrics
that measure the image quality by analyzing quality-sensitive
attributes. However, all of existing quality evaluation metrics
designed for encrypted images mainly extract features, such
as information entropy, pixel spatial correlation, to estimate

image recognizability, but ignore the estimation of distortions
on image attributes. Actually, the quality evaluation task can
also profit from features that reflect the image attributes, e.g.,
structure and texture. In the literature, there are a great number
of NR metrics designed for evaluating synthetically distorted
images from measuring structure and texture. Unfortunate-
ly, they only achieve limited performance in evaluating the
encrypted images [9]. This may be attributed to that they
ignore the measurement of visual recognizability. Overall,
existing methods are insufficient for effectively evaluating the
encrypted images. As stated in Introduction (Section I), a NR
metric is more favored due to its broader application range.
Motivated by the above analyses, we propose a NR quality
evaluation metric for encrypted images by measuring both
visual recognizability and image attributes.

III. THE PROPOSED METRIC

Fig. 2 illustrates the framework of the proposed metric,
which consists of the training stage and testing stage. In the
training stage, many features are extracted first, followed by
the construction of a regression model, which reflects the
relationship between features and quality scores. Then, the
perceptual quality score of a test image can be estimated by
feeding its extracted features into the pre-trained regression
model. Undoubtedly, feature extraction is the key point of the
proposed metric. In this paper, we extract sufficient features
on the statistical property, image naturalness, structure, and
texture by comprehensively analyzing the characteristics of
encrypted images. Specifically, the features on statistical prop-
erty measure the visual recognizability, and the remainder ones
quantify the distortions on image attributes.

Fig. 2. Framework of the proposed metric.

A. Statistical Property

Digital images are full of complex structures with strong
correlations among pixels. The HVS can successfully recog-
nize image contents by extracting structural information. For
security purpose, an image is post-processed by randomizing
the image pixel values. Under extreme conditions, the statisti-
cal distribution of pixel values tends to be uniform, indicating
the convincing security [46]. According to these observations,
it is a good way to estimate the visual security by measuring
the pixel distribution. In this study, we extract various features
through analyzing statistical properties of an image. Given an
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(a) (b)

(c) (d)

Fig. 1. (a) is the reference image. (b) and (c) are the generated images processed by slight- and high- strength encryptions. (d) is the compressed version
(QP = 5).

input image, its standard deviation S1 is first computed by:

S1 =

(
1

N − 1

N∑
i=1

(xi − E(x))2
) 1

2

, (1)

where N denotes the number of image pixels, xi is the
gray value of the i-th image pixel. E(·) is the expectation
operator. Apart from the standard deviation, the skewness S2

and kurtosis S3 characteristics are subsequently measured:

S2 =
E(x− E(x))3

S3
1

, (2)

S3 =
E(x− E(x))4

S4
1

− 3. (3)

In addition, we also calculate high central moments S4:

S4 = E(x− E(x))k, (4)

where k determines the order of central moment. In this paper,
we set k as 5 and 6, thereby obtaining two kinds of high central
moments.

Revisiting Fig. 1, scrupulous readers may find that, natural
images preserve a regular distribution in the spatial domain,
whereas such regularity fades with respect to the encrypted
images. Inspired by this, we analyze the pixel values’ corre-
lation in the spatial domain to indicate the degree of visual
security. To get diverse information, we capture such charac-
teristics along four directions, i.e., the horizontal direction,
vertical direction, main-diagonal direction, and secondary-
diagonal direction. In each direction, the correlation coefficient
of the image I1 and its neighboring-shift version I2 can be

formulated by:

C =
1

H ·W · σ1 · σ2

H∑
h=1

W∑
w=1

(Ih,w1 − I1)(Ih,w2 − I2) (5)

where W and H denote the width and height of the image,
respectively. σ1 and σ2 calculated by Eq. (1) are standard
deviations of I1 and I2. I1 and I2 are the mean values of I1 and
I2. Ih,w1 and Ih,w2 are the pixel values of I1 and I2 in the (h,w)
position. In this study, the neighboring-shift version is simply
obtained by shifting pixel location in a direction with one pixel
distance. Since we consider four directions, four correlation
coefficients are obtained at one time in total. Furthermore, it
is widely known that entropy provides an excellent idea about
self information estimation. Therefore, we also utilize entropy
to quantify the uncertain degree of an image. The entropy Es
can be calculated by

Es = −
U∑
u=0

pu · log pu. (6)

In Eq. (6), pu denotes the probability density of the u-th pixel
value. For 8-bits image, U = 255.

B. Image Naturalness

Generally, digital images represent the commonness and
preserve the original naturalness of the majority of natural
scenes. Such naturalness has been successfully investigated,
discussed, and subsequently unveiled in the form of natural
scene statistic (NSS) regularity [47]. In the literature, con-
sidering that distortions can corrupt NSS regularity, many
research attempts have explored the usage of NSS in evaluating
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image quality [40], [48]–[51]. For example, NSS was used
in evaluating the JPEG2000 compression in [48], and in
evaluating more synthetical distortions in [40], such as JPEG
compression, Gaussian noise, etc. In [50], it was used in
evaluating the quality of 3D virtual views. However, there
is no attempt in investigating the feasibility of utilizing NSS
in evaluating encrypted images. Actually, directly changing
pixel intensities inevitably corrupts image contents, which
may result in infringing NSS regularity and causing unnatural
perception. In view of this, we utilize the NSS regularity
to measure the naturalness damage caused by encryption
algorithms. Specifically, for an image V , it is preprocessed
to obtain the locally normalized luminance V̂ via the local
mean removal and divisive normalization operation:

V̂ (i, j) =
V (i, j)− µV (i, j)

1 + σV (i, j)
(7)

where σV (i, j) and µV (i, j) denote the standard deviation
and local mean (which are calculated by convoluting V with
a P × Q filter kernel) of the (i, j)-th pixel, respectively.
As stated in [40], the type and size of filter kernel do not
sensitively affect the performance. In this work, we emulate
[40] and adopt a 2D Gaussian kernel with size 7 × 7. Without
loss of generality, the mean subtracted contrast normalized
(MSCN) coefficients (obtained by Eq. (7)) of natural images
exhibit Gaussian-like appearance, which is easily infringed
by distortions. To investigate whether encrypted images also
obtain such regularity, we give a simple example, as shown in
Fig. 3. As can be seen from Fig. 3(a), for the natural image
(i.e., Fig. 1(a)), its MSCN coefficients exhibit Gaussian-like
distribution. In contrast, MSCN coefficients of the encrypted
image (i.e., Fig. 1(c)) show more Laplacian-like appearance,
as shown in Fig. 3(b). This indicates that measuring the
distribution of MSCN coefficients is a good way to charac-
terize the naturalness distortion of encryption. Here, we use
the generalized Gaussian distribution (GGD) with zero mean
to estimate the distribution properties of MSCN coefficients.
Formally, the GGD model can be expressed by

g(κ, α, δ2) =
α

2βΓ(1/α)
exp(−(|κ|/β)α), (8)

where β = δ
√

Γ(1/α)/Γ(3/α), Γ(α) =
∫∞
0
tα−1e−tdt. In

Eq. (8), κ is the MSCN coefficient, parameters α and δ2 de-
termine the shape and variance of the distribution, respectively.
In this study, we collect α and δ2 as two features to estimate
image naturalness.

(a) (b)

Fig. 3. MSCN coefficients’ distributions of: (a) Fig. 1(a) and (b) Fig. 1(c).

C. Image Structure and Texture

Perceptual quality profits from three components, i.e., struc-
ture, texture and background [52]. Among them, structural
information plays a primary role in visual perception, espe-
cially in object recognition. Textural information, representing
abundant details of image contents, occupies the second signif-
icant place. On the contrary, background regularly indicates the
smooth areas, thereby contributing less on the recognition of
image contents. Hence, we mainly take structural and textural
information into account for the quality evaluation task.

Classical gradient descriptors, such as Prewitt, Sobel, and
Lapacian, have been extensively used in structural information
extraction. However, they merely mathematically consider pix-
el values’ relationship but ignore human visual characteristics,
which should be paid attention to in image processing, espe-
cially in perceptual related tasks. Considering that the HVS
focuses on the point where each harmonic component contains
the same phase, phase congruence (PC) is a biologically
plausible structure extraction method [53]. Given a point a,
its PC is simply computed as:

PC(a) =

∑
nW (a)bAn(a) ·∆ϑn(a)− γnc∑

nAn(a) + ε
, (9)

with
W (a) = (exp[(u− t(a)) · v] + 1)−1, (10)

∆ϑn(a) = cos(ϑn(a)−ϑn(a))−| sin(ϑn(a)−ϑn(a))|, (11)

where symbol b·c aims to set negative value to zero; An(a)
and ϑn(a) represent the amplitude and phase of n-th Fourier
component at position a, respectively; γn predicts the noise
extent; ε is a small positive constant to preserve stability;
t(a) = (1/N)

∑
nAn(a)(Amax(a) + ε)−1 denotes the ma-

nipulating function by weighting; N is the scale number; u
offers a cutoff value for penalizing low PC values under it;
v, as the gain variable, controls the cutoff sharpness; ϑn(a)
represents the mean value of phase. Since it is out of scope
to investigate these parameters’ influence on the PC map, in
this study, we directly set them according to [53]. Fig. 4(b)
portrays the PC map of Fig. 4(a). It can be intuitively observed
that PC is component to reflect image structures.

However, scrupulous readers may observe that PC map
merely represents general outline but ignores the structures
in details, which is also important for content understanding.
To cope with this problem, we extract multiple high-order PC
maps by taking the first order PC map as the input and then
calculating its PC map. Through M times iteration, we finally
obtains M PC maps. Fig. 4(c) shows the second order PC
map. As can be seen, it preserves more detailed structures
than Fig. 4(b). Revisiting Fig. 1, it is clear that an encrypted
image suffers from structural distortion. There is no doubt that
such distortion inevitably induces PC map variation as well
as its high-order versions. Since these PC maps exist image
information transmission, they reasonably possess the instinct
correlation. Therefore, we hold the hypothesis that encryption
affects correlation between adjacent PC maps and utilize the
mutual information to measure the relevance of PC maps.
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(a) (b) (c)

Fig. 4. Illustrations of PC maps. (a) is the gray-scale image, (b) and (c) are its first and second order PC maps, respectively. For convenient viewing, the
edges are highlighted in black lines.

Given two PC maps Ij and Ij+1, j ∈ {1, 2, · · · ,M −1}, their
mutual information can be calculated by:

M(Ij , Ij+1) = E(Ij) + E(Ij+1)− E(Ij , Ij+1) (12)

where E(Ij) and E(Ij+1) calculated by Eq. (6) are the entropy
values of Ij and Ij+1, respectively. E(Ij , Ij+1) denotes the
joint entropy and can be obtained by:

E(Ij , Ij+1) = −
∑
h,k

PIj ,Ij+1
(h, k) · logPIj ,Ij+1

(h, k),

h, k ∈ {0, 1, · · · , 255}.
(13)

Moreover, we also capture the local entropy of the PC map to
further represent image structural variation. More specifically,
the local entropy is calculated using Eq. (6) with window size
8 × 8. Then, the mutual information of two local entropy
maps is also estimated according to Eq. (12). It is worth
nothing that the structural variation estimated via Eqs. (9)
- (13) is reference-free and entirely different from previous
works. Given that blurriness usually corrupts image structures,
we also adopt one efficient and effective sharpness evaluation
method (i.e., the LPC SI algorithm) to measure the structural
distortion caused by blurriness [54].

Our second consideration is the textural information. Two
widely used and proved textural descriptors are chosen in this
study, i.e., GLCM and LBP. According to [55], GLCM can
be obtained through the following steps: First, an image is
converted to a matrix CI by mapping the image pixel value
range to L gray values. Second, for gray values l1 and l2 in CI
(l1, l2,∈ {1, 2, · · · ,L}), md,θ(l1, l2) counts their occurrences
to be a neighbor with a distance d in the direction of θ.
Finally, the co-occurrence matrix is expressed as Md,θ. After
obtaining GLCM, we extract two features from it (i.e., energy
and homogeneity) to indicate textural information. Energy is a
global feature, reflecting GLCM’s distribution and roughness.
By definition, it can be expressed as:

FE =
L∑

l1=1

L∑
l2=1

Pd,θ(l1, l2)2, (14)

where Pd,θ(l1, l2) stands for the probability of md,θ(l1, l2) in
Md,θ, and it can be computed by:

Pd,θ(l1, l2) = md,θ(l1, l2)/

L∑
l1=1

L∑
l2=1

md,θ(l1, l2). (15)

Homogeneity, as a local feature, quantifies the local change of
pixel intensities in CI . Mathematically, it is formulated as:

FH = Pd,θ(l1, l2)/(1 + |l1 − l2 − 2|). (16)

Overall, the selected two features of GLCM consider both
local and global characteristics to represent textural informa-
tion. Generally speaking, the computation of GLCM with one
pixel distance and four directions is sufficient to reflect the
textural information, and we therefore set d and θ as 1 and
{0◦, 45◦, 90◦ and 135◦}, respectively.

LBP describes the local textural feature by calculating
the relationship between gray values of the center pixel and
its surrounding neighbors [56]. By definition, the rotation
invariant uniform LBP can be expressed as:

Υriu2
P,R =


P−1∑
i=0

s(I(ni), I(nc)) , if U(ΥP,R) ≤ 2

P + 1 , otherwise

, (17)

where P is the number of sampling points, and R is the radius
value of neighbors. I(nc) is the gray value of center pixel
(nc), and I(ni), stands for the gray value of i-th neighbor
(i = {0, 1, · · · , P−1}). The superscript riu2 indicates rotation
invariant uniform patterns when U(·) is less than 2. Formally,
U(·) is computed as the number of bitwise transitions:

U(ΥP,R) = ‖s(I(nP−1), I(nc))− s(I(n0), I(nc))‖

+

P−1∑
i=1

‖s(I(ni), I(nc))− s(I(ni−1), I(nc))‖
, (18)

where

s(I(ni), I(nc)) =

{
1, if I(ni)− I(nc) ≥ 0

0, if I(ni)− I(nc) < 0
. (19)

According to Eqs. (17)-(18), we can observe that the textural
information of an image can be represented by P+2 different
patterns. By definition, P and R directly determine the prop-
erties of the LBP descriptor. In this study, we set P = 8 and
R = 1 as it is sufficient to quantify the textural information
in such settings [31], [43].

D. Visual Quality Estimation

So far, we have extracted many features for one image
in consideration of statistical properties, image naturalness,
structure and texture, and directly combined them into a
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feature vector. Our next task is to build a regression model Rm,
which maps feature vectors to the associated quality scores. In
the literature, many machine learning tools can be chosen for
the regression task. Given that SVR has been widely proved
to be effective in NR visual quality evaluation owing to its
simple but effective characteristics [40], [42], [44], in this
study, we choose the libSVM package [57] to implement SVR
as the competing metrics do for the fair comparison. Given
the training data D = {(o1, τ1), (o2, τ2), · · · (or, τr)}, where
oi and τi, i = 1, 2, · · · , r, are the feature vector and quality
score of the i-th image, the standard form of SVR can be
formulated as:

minimize
w,γ,z,z’

1

2
||w||2 + l

r∑
i=1

(zi + z
′

i)

s.t. wTϕ(oi) + σ − τi ≤ p+ zi

τi − wTϕ(oi)− σ ≤ p+ z
′

i

zi, z
′

i ≥ 0, i = 1, 2, · · · , r.

(20)

where l and p are parameters that meet l > 0 and p > 0.
K(oi, oj) ≡ ϕ(oi)

Tϕ(oj) is the kernel function. Here, the
radial basis function (RBF) is used as the kernel function
due to the fact that it has fast learning convergence and can
effectively approximate nonlinear function. The RBF can be
expressed as:

K(oi, oj) = e−γ‖oi−oj‖
2

, (21)

where γ is the variance of the kernel function. Based on
the training data D, parameters l, p, and γ can be finally
determined, and the prediction model Rm is accordingly built.
In the testing stage, the visual quality score ρ of a test image
can be estimated by feeding its feature vector F into the pre-
trained model Rm:

ρ = Rm(F). (22)

IV. EXPERIMENTAL RESULTS

A. Experimental Protocol

1) Database: The IVC-SelectEncrypt database is the only
encrypted image database reported in the literature [58]. This
database was created by the researchers from the IRCCyN lab
1. It consists of 200 corrupted images created from 8 reference
images (with resolution of 960 × 540). Each reference image
was processed by 5 different encryption techniques with 5
levels. The involved encryption techniques were traditional
encryption, truncation of the codestream, wavelet packet en-
cryption, window encryption with no error concealment, and
window encryption with error concealment. The quality scores
of images were generated subjectively using a “Pair Com-
parison” protocol with 21 observers. During the experiment,
viewers were sat at a distance of 6 times screen height in a
controlled environment. Each image’s quality is given in the
form of mean opinion score (MOS), ranging from 1 to 5. A
higher MOS value indicates to higher visual quality.

1http://www.irccyn.ec-nantes.fr/∼autrusse/Databases/SelectiveEncryption/

2) Evaluation Criteria: For the present study, we utilize
four evaluation criteria to evaluate and compare the proposed
method with existing methods, including Root mean-squared
error (RMSE), Spearman rank correlation coefficient (SRCC),
Kendall’s rank correlation coefficient (KRCC), and Pearson
linear correlation coefficient (PLCC) 2. By definition, these
criteria can be respectively expressed as:

ΛR =

√√√√ 1

K

K∑
i=1

(pi −mi)2, (23)

ΛS = 1−
6
∑K
i=1D

2
i

K(K2 − 1)
, (24)

ΛK =
2(K1 −K2)

K(K − 1)
, (25)

ΛP =

∑K
i=1(pi − p)(mi −m)√∑K
i=1(pi − p)2(mi −m)2

. (26)

In the above equations, K is the total number of images in
the dataset. pi and mi represent the predicted score and its
associated subjective score of the i-th image. Di is the differ-
ence of the i-th image’s rank in the objective and subjective
scores. K1 and K2 indicate the number of concordant and
discordant pairs found in the dataset. p and m are the mean
values of predicted scores and subjective scores, respectively.
Theoretically, an excellent metric should obtain higher values
(with the maximum of 1) of PLCC, SRCC and KRCC but
smaller value (with the minimum of 0) of RMSE. Before
the calculation of PLCC and RMSE, a five-parameter logistic
regression function is needed to remove the nonlinearity of the
estimated scores:

f(xo) = ς1 ·
[

1

2
− 1

1 + eς2·(xo−ς3)

]
+ ς4 · xo + ς5 (27)

where xo and f(xo) denote the estimated score set and mapped
score set of the testing image set, respectively. Taking xo as
the input and MOS as the output of Eq. (27), parameters
(ς1, ς2, · · · , ς5) can be determined by the nlinfit function in
MATLAB. The values of these parameters are initialized
according to the video quality expert group [59] and optimized
with nonlinear least squares optimization between f(xo) and
MOS values. Since different objective methods have different
xo, the fitting parameters are different. In spite of this, the
mapped score f(xo) is with the same range, so it is fair to
make comparisons among different objective methods.

3) Implementation Details: The proposed metric is
learning-based, so a dataset should be split into two non-
overlapping subsets, i.e., training subset and testing subset.
The performance is evaluated on the testing subset after
learning the prediction model on the training subset. In this
work, we strictly follow previous works [20], [43], [44] and set
the train-test split as 80%-20%. To ensure the results are not
restricted to specific train-test splits, we randomly separate the
train subset and test subset 500 times, and report the results in

2For the sake of simplicity, we mark them as ΛR, ΛS , ΛK , and ΛP

according to priority.
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the form of median value. Besides, another parameter directly
affects the overall performance, i.e., the order number used in
structure extraction. In this study, we set the order number as
4 according to the experiment discussed in Section IV-C.

B. Overall Performance Comparison

We compare the proposed method against state-of-the-art
visual security evaluation metrics and mainstream synthetical
distortion evaluation metrics. The former case includes ESS
[27], LSS [27], LFBVS [11], and Xiang’s method [10]. The
later case consists of SSIM [22], BPRI [14], NIQE [60],
BRISQUE [40], NFERM [44], SSEQ [42], NRSL [31], and
GWH-GLBP [45]. For learning-free methods, the performance
is evaluated on the entire database. Whereas, similar to the
proposed method, we divide one dataset into training and
testing subsets for learning-based metrics (i.e., BRISQUE,
NFERM, SSEQ, NRSL, and GWH-GLBP), and measure the
performance on the testing subset after learning the prediction
model on the training subset. Specifically, the result is also
reported as the median value of 500 random train-test split
results. To ensure the fair comparison and avoid unnecessary
mistakes, all the results (except those of ESS, LSS, and
Xiang’s method 3) are computed by implementing the source
codes released by authors.

TABLE I
COMPARISON RESULTS WITH REFERENCE-BASED METRICS.

Criteria ESS [27] LSS [27] LFBVS [11] Xiang [10] SSIM [22] Proposed
ΛP 0.901 0.920 0.891 0.950 0.880 0.894
ΛS 0.909 0.932 0.891 0.949 0.867 0.892
ΛK 0.747 0.786 0.712 0.819 0.689 0.726
ΛR 0.576 0.520 0.601 0.413 0.629 0.598

Experimental results, in the form of PLCC, SRCC, KRCC,
and RMSE, are tabulated in Table I and Table II. For con-
venient viewing, the best result in each type is highlighted
in boldface. From the data in tables, we can observe some
significant and meaningful clues. First, all reference-based
metrics (ESS, LSS, LFBVS, Xiang’s method, and SSIM),
no matter designed for evaluating visual security or visual
quality, have encouraging performance. Since reference-based
metrics possess the reference information, they advantage in
obtaining a high performance by measuring the relationship
between the corrupted image and its reference version. On
the contrary, reference-free metrics do not require reference
information, thereby obtaining relatively inferior performance,
as shown in Table II. In spite of this, the proposed metric
still spares no effort to solve the assessment problem and
ultimately possesses a close approximation to these reference-
based metrics. More concretely, it is superior to SSIM, LFBVS
and is slightly inferior to ESS. Second, the proposed method
outperforms those reference-free metrics, e.g., BPRI, NIQE,
BRISQUE, NFERM, SSEQ, NRSL, and GWH-GLBP. Much
to our excitation, the PLCC value of proposed metric is
in advance of the runner-up reference-free method (NRSL)

3Actually, their results are directly excerpted from reference [10], which
has the similar test environment like us.

approximately 5%. Third, learning-based methods basically
outperform the learning-free method (NIQE). This may be
attributed to that machine learning in learning-based methods
is more competent to build the relationship between features
and quality scores than the empirical combination in learning-
free methods. Based on the above analysis, we have sufficient
confidence that the proposed metric can estimate the visual
quality of encrypted images effectively and is consistent with
subjective feelings.

As introduced above, the proposed metric comprehensively
considers two components, i.e., estimating visual recognizabil-
ity and measuring image attributes, to estimate the quality
of encrypted images. Therefore, we further investigate the
contribution of each component on the final performance. For
this purpose, we take features depicted in Section III-A as
an individual component to represent visual recognizability,
while utilize those in Section III-B and Section III-C to
estimate distortions in image attributes, respectively. Then,
the features in each component and their associated quality
scores are trained via SVR as the same procedure mentioned
in Section IV-A. Finally, the experimental results are reported
in median value of 500 random train-test splits, as tabulated
in the right side of Table I. For the sake of simplicity, we
utilize “M1” and “M2” to denote the generated models in
two components, respectively. From Table I, we can observe
that both components obtain fair performance but with positive
effects. In other words, only considering visual recognizability
or measuring image attributes cannot achieve the expected
results. Such conclusion dovetails with previous works well
[10], [29]. In spite of this, promising performance is obtained
when considering both components, as the proposed metric
does.

Moreover, to draw a more reliable conclusion, we also
investigate the statistical significance between the proposed
metric and competing ones individually (i.e., BRISQUE, N-
FERM, SSEQ, NRSL and GWH-GLBP) via Rank-Wilcoxon
test (with the 95% confidence interval). During the statistical
test, SRCC values of the proposed metric and a competing
one across 500 trails are regarded as the test samples. A null
hypothesis is that the mean correlation of the SRCC values of
proposed metric is equal to that of the competing one with the
95% confidence interval. The alternate hypothesis is that the
mean correlation of the SRCC values of proposed metric is
better or worse than that of the competing one. Experimental
results demonstrate that the proposed metric is statistically
better to all of competing metrics.

Furthermore, we are also interested in whether the proposed
metric is able to compare and rank the quality of multiple
images generated by different encryption algorithms with
different levels. Since the proposed metric is learning-based,
it is impossible to estimate the quality scores of all images
in the database at the same time. In this study, we adopt the
leave-one-out strategy utilized in [39] to evaluate the proposed
metric (as well as the competing learning-based ones). Specif-
ically, the database is first split into 8 image sets according to
the image content. For each set, there are 25 images generated
by 5 encryption algorithms with 5 levels. Then, 7 image sets
are used to learn a prediction model, and the remaining one
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TABLE II
COMPARISON RESULTS WITH REFERENCE-FREE METRICS.

Criteria BPRI [14] NIQE [60] BRISQUE [40] NFERM [44] SSEQ [42] NRSL [31] GWH-GLBP [45] M1 M2 Proposed
ΛP 0.530 0.228 0.815 0.798 0.786 0.840 0.824 0.825 0.859 0.894
ΛS 0.437 0.217 0.796 0.784 0.770 0.830 0.761 0.816 0.849 0.892
ΛK 0.316 0.149 0.630 0.644 0.580 0.655 0.585 0.616 0.670 0.726
ΛR 1.124 1.291 0.773 0.794 0.811 0.711 0.757 0.720 0.686 0.598

TABLE III
SRCC COMPARISON RESULTS ON THE INDIVIDUAL IMAGE SET.

Image Set Reference-Based Reference-Free
LFBVS [11] SSIM [22] BPRI [14] NIQE [60] BRISQUE [40] NFERM [44] SSEQ [42] NRSL [31] GWH-GLBP [45] Proposed

Cimg6013 0.825 0.854 0.301 0.486 0.777 0.736 0.851 0.787 0.699 0.893
Cimg6178 0.879 0.881 0.382 0.245 0.884 0.884 0.897 0.816 0.910 0.941
Cimg7593 0.950 0.867 0.521 0.114 0.855 0.852 0.915 0.900 0.880 0.964
Cimg7869 0.844 0.850 0.543 0.282 0.837 0.863 0.837 0.879 0.903 0.876
Img 0596 0.912 0.885 0.511 0.375 0.855 0.857 0.687 0.945 0.945 0.934
Img 0764 0.897 0.906 0.437 0.389 0.878 0.883 0.901 0.867 0.829 0.795
Img 0768 0.927 0.896 0.152 0.749 0.694 0.642 0.424 0.491 0.822 0.801
P1010004 0.931 0.922 0.709 0.347 0.544 0.617 0.541 0.727 0.784 0.911
Average 0.896 0.883 0.444 0.373 0.790 0.792 0.757 0.801 0.847 0.890

is used for testing. This procedure repeats 8 times, and each
time is with a different testing set. Table III presents the SRCC
values of each metric over the 8 image sets. For convenient
viewing, the best result is highlighted in boldface. From the
table, we have the following observations. First, none of these
metrics always achieves the best result among all image sets.
Second, the proposed metric performs stably across different
image sets and totally occupies the top place 4 times among
the 8 comparisons with competing NR metrics. In contrast,
some metrics (e.g., BPRI, NIQE, BRISQUE, and SSEQ) show
a significant change across different image sets. Third, the
proposed metric outperforms all competing NR metrics with
respect to the average SRCC value of obtained across all image
sets. According to the comparison results, we believe that
the proposed metric possesses more potential in ranking the
quality of encrypted images than others.

C. Parameters Sensitivity

During feature extraction, the order number M used in the
PC map construction mainly determines the overall perfor-
mance of the proposed metric. In this section, we further
investigate its impact. For this purpose, we set M with various
values, ranging from 2 to 5, and construct model as described
in Section III-D to obtain the associated results. Experimental
result is intuitively depicted in Fig. 5(a). As can be seen,
SRCC value slightly increases with the increasement of M
and reaches its peak when M = 4. Hence, we set it as 4 in
this study reasonably.

As the proportion of training subset to the entire database
highly determines the overall performance of learning-based
metrics, we further conduct an experiment to explore the
impacts of proportion of the training subset. To be specific,
we range the training subset from 20% to 80% at an interval
of 10%, and the remaining subset for testing. Experimental
results are depicted in Fig. 5(b). Intuitively, SRCC gradually
increases with the training proportion increasing. Besides, we
find that the performance is still considerable when training

(a) (b)

Fig. 5. SRCC values under different parameter settings: (a) order number
M , (b) training proportion.

subset is 40% (with SRCC about 0.84). Hence, we can believe
that the proposed method is stable.

V. CONCLUSION

Existing quality evaluation metrics for encrypted images are
reference-based and have limited application range. In this
work, we present a novel NR metric for automatically evalu-
ating perceptual quality of encrypted images. As a pioneering
work, we attempt to solve the quality evaluation problem by
estimating visual recognizability and measuring the distortions
in multiple image attributes. Specifically, statistical character-
istics, self-correlation, and entropy are extracted to indicate
visual recognizability, which reflects the general security of
an image. Meanwhile, since naturalness, structure, texture are
sensitive to perceptual quality, we extract a number of features
to measure the distortions on these image attributes. Finally, a
regression model is deployed to build the relationship between
the feature space to quality scores. Extensive experiments have
proved the effectiveness of the proposed metric on the IVC-
SelectEncrypt database.
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